23 andMe’s Anne Wojcicki has a plan to include better genetic data from people of color

One of the first customer genetic testing companies, 23andMe says it aims to be at the forefront in assembling genetically diverse data throughout the world.

The company merely launched a standalone $99 pedigree service today as a route to offer those interested in their genetic ancestry the ability to tracing ancestors and relatives just by spitting into a tube.

Ancestral DNA is something founder Anne Wojcicki says is very popular on the platform and is a good introduction to genetics in general. And, adds Wojcicki, the market for this product is global because everyone in the world potentially wants to know about where they come from.

However, the companys pedigree reports have been roundly criticized for a lack of good genetic the necessary data for diverse populations around the world. Euny Hong wrote a review at Quartz in which she discovered her genetic info came from a mere 76 Koreans, for example.

23andMe says it is making an effort to get more people of color on the platform with the launch of several programs. This spring the company introduced a project called Roots into the Future to gather genetic info from African American populations. 23 andMe also helped money the Human Genome Diversity Project and tells it currently has two projects underway in Africa to increase thediversity of its pedigree composition data, as well.

But the burden shouldnt sit squarely on 23 andMe. In fact, much of the sampling being implemented in genetic identification has been from Europeanpopulations 96 percent of the time, according to a reportfromthe National Center for Biotechnology Information.

And there are repercussions to smaller genetic samples , not only in trying to convince an increasingly diverse population to buy your product worldwide, but in health research in general. A larger sample yields a much better chance of detecting genetic markers for diseases and in getting the research right.

23andMe pointed out in a blog post titled The Real Issue: Diversity in Genetics Research a heart disease analyze that, due to biased research, concluded African Americans were more likely than whites to carry a mutant putting them at risk for the heart condition known as hypertrophic cardiomyopathy, when they actually are not more likelyto have the mutation. Proper genetic research could weed out these biases, but we need a broader scope of data from more and diverse populations to get there.

23andMe says it conducts its own research for much of personal data it currently provides but the company will need those participating in the public is take the next step.

A good example of what 23 andMe hopes to see more of is a recently announced Nevada genetic population analyze. The Nevada government took it upon itself to offer thousands of its citizens a free test that will examinehealth, population, genetic and environmental data.

Of course, Nevada is largely white and hispanic.But Wojcicki has high hopes others will join in to help close the gap.

Theres an amazing opportunity out there by leveraging the power of some of these big groups to bring together all these individuals and their medical record and create a community that is really going to transform individualized medication and personalized medicine and be a research powerhouse, she told TechCrunch.

For those interested in contributing a little bit of their DNA in exchange for ancestral datum you can go here to order your kit.

The ancestry product was initially part of the overall package be submitted to clients, which also includes health data. Customers will now have the option of opt only the ancestry package or the health and ancestry combination.

Read more:

‘Anti-malarial mosquitoes’ created using controversial genetic technology

Scientists aim to tackle malaria by creating bugs unable to spread the parasite, but caution recommended over unpredictable ecological consequences

Hundreds of genetically modified mosquitoes that are incapable of spreading the malaria parasite to humen have been created in a laboratory as part of a revolutionary approach to combating the disease.

The move marks a major step towards the development of a powerful and controversial technology called a gene drive that aims to tackle the disease by forcing anti-malarial genes into swarms of wild mosquitoes.

The procedure can quickly transform the genetic makeup of natural insect populations, making it a dramatic new tool in the fight against an infection that still claims over 400,000 lives a year. The same technology is being considered for other human diseases and infections that devastate crops.

This is a significant first step, said Prof Anthony James at the University of California, Irvine. The mosquitoes we created are not the final brand, but we know this technology allows us to efficiently generate large populations.

But gene drive technology is so powerful that resulting researchers have recommended scientists in the field to be cautious. A warning published in August in the prestigious publication Science, by squads in the UK, US, Australia and Japan, said that while gene drives have the potential to save lives and bring other benefits, the accidental release of modified organisms could have unpredictable ecological consequences.

They call on scientists to ensure that experimental organisms cannot escape from their labs, be released on purpose, or even find their way out accidentally in the event of a natural disaster. Researchers should also be open about the precautions they take to prevent an unintended release, they said.

In the latest study, mosquitoes were engineered to carry genes for antibodies that target the human malaria parasite, Plasmodium falciparum . When released into the wild, researchers believe the modified insects will breed with normal mosquitoes and pass the anti-malarial genes on to their young, making an ever-increasing proportion of future generations resistant to the malaria parasite.

James and his squad employed a genome editing procedure called Crispr-Cas9 to write anti-malarial genes into the Dna of eggs belonging Anopheles stephensi mosquitoes. A major carrier of the malaria parasite in Asia, the strain is responsible for more than 10% of malaria cases in India.

In lab tests, the modified mosquitoes passed on their anti-malarial genes to 99.5% of their offspring, is recommended that the procedure was incredibly effective and efficient. To track which bugs inherited the antibody genes, the scientists added a tracer gene that devoted carriers red fluorescent eyes.

James, who signed the warn in Science, said more run was needed to perfect the gene drive before modified insects can be tested in field trials. But describing the experimentations in Proceedings of the National Academy of Science, he wrote: Strains based on this technology could have a major role in sustaining malaria control and elimination as part of the eradication agenda.

Dr Simon Bullock, a geneticist at the MRCs Laboratory of Molecular Biology in Cambridge, helped to perfect the use of Crispr genome editing in flies, and also signed the call for precautions over gene drive research. Gene drive technology has great potential to help tackle malaria and other global problems in public health. But the capacities of genetic changes to spread rapidly in the wild population means that great caution should be taken when building gene drive systems in the laboratory.

Accidental or malicious release of a gene drive system into the wild could have unpredictable ecological consequences and thus researchers must use multiple safeguards the hell is robust to human error and nefarious actions. Fortunately, several safeguarding strategies are already available, he said.

But Bullock, who was not involved in the research, was surprised that the California group had not described the safeguards they put in place to ensure the mosquitoes did not escape. Devoted the highly sensitive nature of this technology and their call for transparency in this area of research, Im flabbergasted that the authors have not are set out in the publication detailed information on the containment procedures used in this study and how they were evaluated, he added.

Prof Anthony Shelton who studies pest management at Cornell University in New York said the California-based team was justified in its optimism over the procedure. Before open field test, they need to test their bugs in small arenas and field cages to decide the potential for it to work on a larger scale, he told. In theory this technology should work in the field, but farther exams are needed and only then will the full potential of this breakthrough be realized for the benefit of humanity.

Prof Gregory Lanzaro at University of California, Davis added: Concern that narcotic and insecticide resistance are eroding recent successes in managing malaria has drawn attention to alternative approaches, including the use of genetically modified mosquitoes. This new study marks a significant advance toward the development of this strategy.

Read more: www.theguardian.com