‘Anti-malarial mosquitoes’ created using controversial genetic technology

Scientists aim to tackle malaria by creating bugs unable to spread the parasite, but caution recommended over unpredictable ecological consequences

Hundreds of genetically modified mosquitoes that are incapable of spreading the malaria parasite to humen have been created in a laboratory as part of a revolutionary approach to combating the disease.

The move marks a major step towards the development of a powerful and controversial technology called a gene drive that aims to tackle the disease by forcing anti-malarial genes into swarms of wild mosquitoes.

The procedure can quickly transform the genetic makeup of natural insect populations, making it a dramatic new tool in the fight against an infection that still claims over 400,000 lives a year. The same technology is being considered for other human diseases and infections that devastate crops.

This is a significant first step, said Prof Anthony James at the University of California, Irvine. The mosquitoes we created are not the final brand, but we know this technology allows us to efficiently generate large populations.

But gene drive technology is so powerful that resulting researchers have recommended scientists in the field to be cautious. A warning published in August in the prestigious publication Science, by squads in the UK, US, Australia and Japan, said that while gene drives have the potential to save lives and bring other benefits, the accidental release of modified organisms could have unpredictable ecological consequences.

They call on scientists to ensure that experimental organisms cannot escape from their labs, be released on purpose, or even find their way out accidentally in the event of a natural disaster. Researchers should also be open about the precautions they take to prevent an unintended release, they said.

In the latest study, mosquitoes were engineered to carry genes for antibodies that target the human malaria parasite, Plasmodium falciparum . When released into the wild, researchers believe the modified insects will breed with normal mosquitoes and pass the anti-malarial genes on to their young, making an ever-increasing proportion of future generations resistant to the malaria parasite.

James and his squad employed a genome editing procedure called Crispr-Cas9 to write anti-malarial genes into the Dna of eggs belonging Anopheles stephensi mosquitoes. A major carrier of the malaria parasite in Asia, the strain is responsible for more than 10% of malaria cases in India.

In lab tests, the modified mosquitoes passed on their anti-malarial genes to 99.5% of their offspring, is recommended that the procedure was incredibly effective and efficient. To track which bugs inherited the antibody genes, the scientists added a tracer gene that devoted carriers red fluorescent eyes.

James, who signed the warn in Science, said more run was needed to perfect the gene drive before modified insects can be tested in field trials. But describing the experimentations in Proceedings of the National Academy of Science, he wrote: Strains based on this technology could have a major role in sustaining malaria control and elimination as part of the eradication agenda.

Dr Simon Bullock, a geneticist at the MRCs Laboratory of Molecular Biology in Cambridge, helped to perfect the use of Crispr genome editing in flies, and also signed the call for precautions over gene drive research. Gene drive technology has great potential to help tackle malaria and other global problems in public health. But the capacities of genetic changes to spread rapidly in the wild population means that great caution should be taken when building gene drive systems in the laboratory.

Accidental or malicious release of a gene drive system into the wild could have unpredictable ecological consequences and thus researchers must use multiple safeguards the hell is robust to human error and nefarious actions. Fortunately, several safeguarding strategies are already available, he said.

But Bullock, who was not involved in the research, was surprised that the California group had not described the safeguards they put in place to ensure the mosquitoes did not escape. Devoted the highly sensitive nature of this technology and their call for transparency in this area of research, Im flabbergasted that the authors have not are set out in the publication detailed information on the containment procedures used in this study and how they were evaluated, he added.

Prof Anthony Shelton who studies pest management at Cornell University in New York said the California-based team was justified in its optimism over the procedure. Before open field test, they need to test their bugs in small arenas and field cages to decide the potential for it to work on a larger scale, he told. In theory this technology should work in the field, but farther exams are needed and only then will the full potential of this breakthrough be realized for the benefit of humanity.

Prof Gregory Lanzaro at University of California, Davis added: Concern that narcotic and insecticide resistance are eroding recent successes in managing malaria has drawn attention to alternative approaches, including the use of genetically modified mosquitoes. This new study marks a significant advance toward the development of this strategy.

Read more: www.theguardian.com

There’s Absolutely No Evidence That Pesticides Are To Blame For The Rise In Microcephaly

A group the coming week has announcedthat the thousands of cases of microcephaly reported this yeararent down to the Zika virus, but are instead due to pesticides.

The report, compiled by an Argentinian organisation calledPhysicians in the Crop-Sprayed Villages, highlights the fact that some areas hit hard by the epidemic have not reported any cases of microcephaly. For instance, more than 5,000 pregnant women have been infected in Colombia, but there has been an apparent absence of this birth defect, which causes newborns to be born with abnormally small heads. Yet in Brazil, there have been more than 460 suits corroborated since the outbreak came under investigation last year, and more than 3,800 suspected cases.

The link between microcephaly and Zika has yet to be confirmed, but is strongly suspected by health professionals. The report however proposes an alternative explanation: a larvicide called pyriproxyfen, which has been added to drinking water supplies in some regions of Brazil since 2014 with the aim of reducing mosquito numbers. And of course, simply to stimulate the tale sound more convincing, the document points out that pyriproxyfen is produced by a subsidiary of Monsanto, Sumimoto Chemical. However, Monsanto has been quick to point out to Tech Times that it does not own the company.

Some afflicted countries have advisedwomen to delay becoming pregnant because of the Zika epidemic. Mario Tama/ Getty

Regardless of the relationship with the much-hated biotech giant, there are scientific reasons as to why this theory isnt plausible. Pyriproxyfen runs by mimicking a hormone present in numerous insect pests, which has the effect of interfering with the process of metamorphosis and preventing them from reaching reproductive stages. As Dr. Ian Musgrave from the University of Adelaide points out to the Science Media Centre, this hormone isnt present in vertebrates and thus has extremely low toxicity to mammals.

In terms of how much is present in water reservoirs that have been sprayed with pyriproxyfen to control mosquito larvae, a person had a duty to drink well over 1,000 litres of water a day, every day, to achieve the threshold toxicity levels seen in animals, he adds.

A number of studies have been conducted in several mammals, exploring both the potential short- and long-term effects of pyriproxyfen exposure, and none of them identified evidence of developmental problems or neurotoxicity. In contrast, the Zika virus has now been identified in the brains of babies and a fetus with microcephaly, and is also linked with another neurological condition called Guillain-Barr. And while it is difficult to prove cause and consequence, the overwhelming evidence points to Zika as the likely driver behind this surge in microcephaly cases.

Alongside being incredibly frustrating to researchers and public health experts, unscientific reports such as this have the potential to be extremely damaging. If this pesticide has the potential to safely reduce the burden of mosquitoes, which are carriers of more than simply Zika, then it can also reduce the burden of disease.

As Professor Andrew Batholomaeus from the University of Queensland stresses: The potential human health consequences of deterring the use of pyriproxyfen in drinking water storage and other mosquito-reduction programs is catastrophic with potential deaths and serious cancer from otherwise avoidable malaria, dengue and other mosquito-borne illness numbered in at least the hundreds of thousands. If these reports and suggestions are motivated by anything other than ignorance and poor scholarship they are deserving of the most strident condemnation.

Read more: www.iflscience.com